
Chapter 3

Flow Analysis

3.1 Introduction

Pipes and ducts are the veins and arteries of mechanical systems such as a power-
plants, refineries, or HVAC systems. Without them, these systems could not exist.
As in our own bodies, where the veins and arteries move blood through the pumping
action of the heart, power plants require the circulation of a “working” fluid in order
to provide its functionality. In this chapter we will examine the basics of flow analysis
and piping system design, and develop the framework for the analysis of integrated
mechanical systems such as powerplants, refineries, and airflow systems, to name just
a few.

3.2 Flow in Pipes and Channels

Analysis of flow in piping systems always begins with some form of the mechanical
energy equation. Initially, we may consider the Bernoulli equation:
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where γ = ρg.
However, our intuition will tell us that losses throughout the system will limit ap-

plication of Eq. (3.1). We may however use Eq. (3.1) to determine system behaviour
under ideal comditions, and use these results as a target for maximum performace. In
order to apply Eq. (3.1) to a piping system, we must extend the Bernoulli equation
to account for losses which result from pipe fittings, valves, and direct losses (friction)
within the pipes themselves. The extended Bernoulli equation may be written as:
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Additionally, at various points along the piping system we may need to add energy
to provide an adequate flow. This is generally achieved through the use of some sort
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of prime mover, such as a pump, fan, or compressor. For a system containing a pump
or pumps, we must include an additional term to account for the energy supplied to
the flowing stream. This yields the following form of the energy equation:
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Finally, if somewhere in the piping system a component extracts energy from the
fluid stream, such as a turbine, the energy equation takes the form:
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This statement of the mechanical energy equation from fluid dynamics states that
the initial energy at point 1 plus any energy supplied by a pump or pumps must
balance with the energy at point 2 plus any losses incurred due to fluid friction, pipe
fittings, valves etc., plus any energy output through mechanical conversion. In a fluid
piping system, whether we are dealing with a single pipe or a network of pipes, Eqs.
(3.1-3.4) will be at the center of analysis. Note, that Eq. (3.4) is written to reflect
that all work terms have a positive sign convention. In the classic formulation of the
energy equation work done on a system and work done by a system have different
signs. By isolating each component of shaft work separately we have included the sign
convention by appropriately placing the work terms on the left side for work done on
a system and the right side for work done by the system. This is best summarized by
Fig. 3.1. The student should also take note that headloss represents a loss in total
head or pressure and not merely the loss in static pressure, i.e.(
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It is evident from Fig. 3.1, that static pressure recovery occurs whenever the flow
velocity decreases, but that total pressure drop still diminishes.

3.3 Losses in Piping Systems

Losses in a piping system are typically categorized as major and minor losses. Minor
losses in piping systems are generally characterized as any losses which are due to
pipe inlets and outlets, fittings and bends, valves, expansions and contractions, filters
and screens, etc. Essentially, everything within the system which is not a section
of pipe or other major component. In fact, in many flow systems the minor losses
can account for more head loss, than the pipes themselves. The primary distinction
comes in the manner in which major and minor losses are calculated.

In the mechanical energy equation, head losses are computed from the following
expression:
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Fig. 3.1 - Conservation of Mechanical Energy, From ASHRAE Handbook -
Fundamentals, ASHRAE, 2000.
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or in terms of pressure loss,
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Care must be taken, that the appropriate mean flow velocity is used in each term
for each individual length of pipe and each minor loss. The third group represents
major losses due to components within a system that the fluid must flow through.
Since velocity can vary through a flow system, it is highly recommended to define
each velocity in terms of the system mass flow rate ṁ = ρV iAi.

3.3.1 Minor Losses

Minor losses in systems are most often calculated using the concept of a loss coefficient
or equivalent friction length method. In this chapter we exclusively use the the K-
factor or loss coefficient method. In the loss coefficient method, a constant or variable
factor K is defined as:
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The associated head loss is related to the loss coefficient through

hf = K
V 2

2g
(3.9)

Values of K have been determined experimentally for many configurations of bends,
fittings, valves etc. A comprehensive source of this loss coefficient data is found in the
excellent reference Handbook of Hydraulic Resistance by Idelchik (1986) or the Applied
Fluid Dynamics Handbook by Blevins (1984). These books are now considered the
leading source of design data for hydraulic systems. Some useful expressions for the
computing minor losses in pipe systems are supplied in the figures below. Figure 3.2
provides simple constant K factors, whereas Figs. 3.3a-3.3c provide K factors which
are dependent on specific geometric details.

We conclude with two useful expressions which are used often in flow modelling,
the sudden contraction loss and the sudden expansion loss. These may be predicted
using the simple relationships:

KSC ≈ 0.42(1− σ2)2 (3.10)

and
KSE ≈ (1− σ)2 (3.11)
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Fig. 3.2 - Typical Constant K-Factors.
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Fig. 3.3a - Variable K-Factors, From Design of Fluid-Thermal Systems, Janna,
PWS Publishing, 1998.
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Fig. 3.3b - Variable K-Factors, From Design of Fluid-Thermal Systems, Janna,
PWS Publishing, 1998.
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Fig. 3.3c - Variable K-Factors, From Design of Fluid-Thermal Systems, Janna,
PWS Publishing, 1998.
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where

0 < σ =
A1

A2

< 1 (3.12)

Here A1 and A2 denote the smaller and larger duct areas, respectively. In the above
expressions the K-factor is based on the velocity through the smaller section. In the
preceding figures, the K-factors are based on the velocity of the flow through the
piping element. In the case of branching components, the K-factor is usually based
on the flow entering the pipe element for flow splitting device, and the flow leaving
for a flow combining device.

Fig. 3.4 - Sudden Expansion/Contraction Losses, From Introduction to Fluid
Mechanics, Fox and McDonald, Wiley, 2006.

3.3.2 Major Losses

Major losses of head in a piping system are the direct result of fluid friction in pipes
and ducting. The resulting head losses are usually computed through the use of
friction factors. Friction factors for ducts have been compiled for both laminar and
turbulent flows. Two widely adopted definitions of the friction factor are the Fanning
friction factor defined as:
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and the Darcy friction factor defined as:
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Now for a circular pipe, the shear stress τ , is related to the pressure gradient dp/dx,
by means of the following relation derived from a force balance on an element of fluid
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(3.15)

This leads to the definition of the hydraulic diameter and results in the following
relationship between the two definitions:

fD = 4fF (3.16)

In this chapter we will use exclusively use the Fanning friction factor definition.
Therefore, the head loss characteristic of a circular pipe may be written as:
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In future we will drop the subscript F and assume explicitly the definition of the
Fanning friction factor unless otherwise indicated. Note that Eqs. (3.5) and (3.6) are
written in terms of the Fanning friction factor.

For a circular duct three different friction factor models are of interest. These are:
fully developed laminar flow, developing laminar flow, and fully developed turbulent
flow. The following design correlations for the friction factor are of interest for circular
pipes and non-circular ducts.

Fully Developed Laminar Flow, ReDh
< 2300

In the fully developed laminar flow region in a circular tube, the Fanning friction
factor which is often written in terms of the friction factor-Reynolds number product
is:

fReDh
= 16 (3.18)

or

f =
16

ReDh

(3.19)

In many engineering systems, flow in a duct which is not circular in cross-section
is quite common. The definitions above are still applicable through the definition
of the hydraulic diameter. The hydraulic diameter arises from Eq. (3.14). For a
non-circular duct or channel the hydraulic diameter is defined as

Dh =
4Ac

P
(3.20)

where Ac is the cross-sectional area and P is the wetted perimeter of the non-circular
duct.

Equation (3.19) has been adopted by virtually all hydraulics engineers. As we shall
see, the concept of the hydraulic diameter is quite useful in applications where the
flow is turbulent, since the turbulent friction factor is only weakly dependent upon
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duct shape. This is not the case when the flow is laminar. Laminar flow friction
factors are a strong function of duct shape. As a result, we must be careful when
approximating friction factors for non-circular ducts. As we saw earlier in Chapter 2,
for non-circular ducts the laminar friction factor is obtained from:

f =
C

ReDh

(3.21)

where the constant C is often tabulated (see Chapter 2) for specific duct shapes. It
is evident that the hydraulic diameter concept does not allow for a single value of the
friction factor to be used for laminar flow in non-circular ducts. All of the results of
Table 2 in Chapter 2 can easily be predicted from the following expression which is
derived from the analytical solution for the rectangular duct:

fReDh
=

12β3/2

(1 + β)

[
1− 192

π5β
tanh

(π

2
β
)] (4

√
Ac

P

)
(3.22)

where 1 < β < ∞ is the duct aspect ratio, A is the cross-sectional area, and P is
the perimeter of the non-circular duct. Note, that β = 100 is a fair approximation to
the parallel plate channel. This expression may be used to predict the fReDh

value
for many other non-circular cross-sections within ± 10 percent, provided that the
smallest re-entrant corner angle is greater than 15 degrees. The aspect ratio β for
most non-circular ducts is simply a measure of the slenderness of the duct.

Developing Laminar Flow, ReDh
< 2300 and L < Le

In the laminar entrance region, the pressure drop is much larger owing to the
development of the hydrodynamic boundary layers, see Fig. 3.4. If a tube is short or
not much longer than the region where boundary layers develop an alternate approach
is required to predict the pressure drop. The entrance length is defined such that

Le ≈ 0.05DhReDh
(3.23)

where
L << Le Short Duct
L >> Le Long Duct

(3.24)

A simple model developed by Muzychka (1999) for a duct of any length L is:
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)2
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(3.25)

where the apparent friction factor fapp combines the effects of the wall shear stress
and increase in pressure drop due to the accelerating core in the entrance region. The
dimensionless parameters L∗ and ReDh

are defined as:

L∗ =
L

DhReDh

ReDh
=

ρV Dh

µ
(3.26)
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The remaining parameter fReDh
is the fully developed friction factor-Reynolds

number product defined earlier. The pressure drop in terms of the mass flow rate and
the fRe group is obtained from the following equation:

∆p =
2(fappReDh

)ṁνL

D2
hAc

(3.27)

For developing laminar flows Eq. (3.24) is still applicable since the term which
accounts for the entrance region pressure drop, is independent of duct shape. On the
other hand as we have seen, the second term which accounts for the fully developed
flow component, is a strong function of duct shape. Therefore, one merely has to
substitute the appropriate value of the fReDh

group for the duct of interest. Equation
(3.24) provides accuracy within ± 5 percent for most common duct shapes.

Fig. 3.5 - Laminar Development of Velocity in a Circular Pipe, From
Fluid Mechanics, White, McGraw-Hill, 2000.

Fully Developed Turbulent Flow, ReDh
> 4000

Turbulent duct flows have been traditionally analyzed using empirical methods.
Numerous friction factor models have been developed for both smooth and rough
walled ducts. The earliest models for smooth ducts are the Blasius and Prandtl
models. While for rough ducts, the early studies of Nikuradse, Colebrook, and Von
Karman, eventually lead the way for development of the well known Moody diagram
shown below. More recently, a number of explicit equations have been developed for
eliminating the need for the Moody diagram.
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Turbulent friction in smooth pipes has received considerable attention due to the
large number of applications. Numerous models have been proposed for both smooth
and rough pipes. We consider only the most popular and/or robust models. These
models which span some eight decades are found in the numerous heat transfer and
fluid dynamics handbooks. Several are given below.

Fig. 3.6 - The Moody Diagram, From Mechanics of Fluids, Massey, Van
Nostrand Reinhold, 1975.

Blasius Model

The earliest model for turbulent friction in a smooth pipe is attributed to Blasius
(1911). He analysed numerous published data and non-dimensionalized them using
Reynolds’ similarity law, i.e. the Reynolds number. His empirical formulation which
is valid for 4000 < ReDh

< 100, 000 is:

f =
0.0791

Re
1/4
Dh

(3.28)

The above formula represented the available data at that time quite well. Un-
fortunately, no data were available to Blasius for Reynolds numbers greater than
100, 000. Subsequently, it was found the model provided poor agreement outside
of this Reynolds number range. The model is still useful for problems where the
Reynolds number is in range, due to its simplicity and accuracy.
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Prandtl-Karman-Nikuradse Model

Another popular expression for fluid friction in smooth pipes was developed by the
early pioneers, Prandtl, Karman, and Nikuradse. In some texts it is referred to as
the PKN model. It has a semi-theoretical basis and is valid for Reynolds numbers
much larger than permitted in the Blasius model. The PKN model has the form:

1√
f

= 1.7372 ln(ReDh

√
f)− 0.3946 (3.29)

It is valid for Reynolds numbers in the range 4000 < ReDh
< 107, and agrees with

the experimental data of Nikuradse and others within ± 2 percent. However, due to
its implicit nature, it is not very useful.

Early experiments by Nikuradse with sand grains, showed that roughness was a
factor in turbulent flows. Later, Colebrook, showed that commercial pipe roughness
behaved in a different manner than sand grain roughness for turbulent flows with
moderate Reynolds numbers. At large values of the Reynolds number, where the
friction factor becomes a constant, both sand grain and commercial pipe roughness
behave in a similar manner. Fig. 3.7 provides typical roughness values for commercial
pipe materials.

Fig. 3.7 - Commercial Pipe Roughness, From Mechanics of Fluids, Massey,
Van Nostrand Reinhold, 1975.
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Colebrook and White Model

Fully developed turbulent flow in rough ducts may be characterized by the Colebrook
expression which is the basis for the turbulent portion of the Moody diagram:

1√
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)
(3.30)

This expression, although highly accurate, is not very amenable to design due to
its implicit nature. However, for fully rough pipe flows where the friction factor is
independent of Reynolds number, the simpler expression:

1√
fd

= −2 log

(
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3.7

)
(3.31)

finds many uses in modelling.

Moody Model

Moody (1944) proposed the following explicit formula for predicting turbulent rough
surface friction factors:

f = 0.001375

[
1 +
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20, 000

k

Dh

+
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]

(3.32)

Massey (1975) reports that the above equation provides ±5% accuracy as compared
with the Colebrook and White model, however, Haaland (1983) reports errors as large
as 16 %.

Swamee and Jain Model

An alternate form of the turbulent friction model proposed by Swamee and Jain
(1976) which provides accuracy within ±1.5% is given by:

f =
1
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Haaland (1983) contends that the accuracy of the above model is actually ±3%
when compared with the results computed using the Colebrook and White model.

Haaland Model

The most recent of the explicit friction factor models is due to Haaland (1983). Haa-
land proposed for systems with a relative roughness k/Dh > 10−4:
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Haaland’s justification for formulating yet another explicit model, was that none
of the above explicit models were simple and accurate. These grounds are easily
questioned on the basis that the Colebrook and White model represents data within
a margin of error larger than ±5%, in any case. Further, there is not much difference
in the expressions 3.32 and 3.33.

Churchill Model

Presently, there is only one model which represents the complete Moody diagram.
This model, which was developed by Churchill (1977), combines the laminar and
turbulent regions with a linearly interpolated transition region. Since the model is
a representation of the Moody diagram, it is applicable only to circular pipes. A
correlation of the Moody diagram was developed by Churchill (1977). It spans the
entire range of laminar, transition, and turbulent flow in pipes. It consists of the
following expressions:
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The present model is applicable only to circular pipes and is a mathematical repre-
sentation of the Moody diagram. Results in the transition region must be used with
caution, as a linear interpolation of the approximate trend of data is constructed.

Flow Through Porous Media
In many engineering systems, filtration beds or packed columns are used in various

processes. These components consist of a channel or duct which contains some form
of porous material or a collection of randomly packed spheres or other non-spherical
particle. A simple model for predicting pressure drop through packed columns was
developed by Ergun (1952). The model which is now commonly referred to as the
Ergun equation is a composite solution containing two asymptotic results. One is for
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slow viscous flow and the other for highly turbulent flow. The resulting model takes
the following form:

f =
(∆p/L)
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where Dp is the diameter of the spherical or equivalent particle, ε = Vfree/Vtotal is
the porosity of the bed or column which is defined as the volume of voids divided
by the volume of the bed or column, and Vo = ṁ/(ρAc) is the superficial velocity
which would result in the bed or column if no packing were present. The Ergun equa-
tion predicts the pressure drop (or flow) through porous media or packed columns
quite well, see Fig. 3.8. It is widely used in the chemical process industries for mod-
elling filtration beds, columns containing catalyst pellets, and percolation systems.
Additional information on the flow of fluid through porous media may be found in
Churchill (1987), Bear (1972), and McCabe et al. (1985).

Fig. 3.8 - Flow Through Porous Media, From Unit Operations in Chemical
Engineering, McCabe et al., 1985.

Example 3.1
Examine the airflow through a heat sink which is composed of a number of channels

formed by a series of plates. The system parameters are: fin height H = 118 mm, fin
thickness t = 1.25 mm, fin spacing b = 2.5 mm, and fin length in direction of flow
L = 30 cm. The air properties may be taken to be ρ = 1.2 kg/m3, µ = 1.8 × 10−5

Pa · s. Calculate the pressure drop as a function of approach velocity V∞. Include
minor losses at the entrance and at the exit. What is the pressure drop when V∞ = 2
m/s?

Example 3.2
A filtration component consists of a rectangular channel having dimensions H =

10 cm, W = 50 cm, and L = 100 cm, containing carbon pellets of diameter 5
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mm. Develop the pressure drop versus mass flowrate characteristic for the following
porosities (due to packing arrangement): ε = 0.5, 0.7, 0.9. The fluid properties may
be taken to be ρ = 1000 kg/m3, µ = 1.0 × 10−3 Pa · s. What is the pressure drop
when ṁ = 50 kg/s? Is it better to operate three filters in series or three in parallel.
Why?

Example 3.3
Examine the electronics packaging enclosure described below. Nine circuit boards

are placed in an enclosure with dimensions of W = 50 cm, H = 25 cm, and L = 45
cm in the flow direction. If the airflow required to adequately cool the circuit board
array is 3 m/s over each board, determine the fan pressure required to overcome the
losses within the system. Assume each board has an effective thickness of 5 mm,
which accounts for the effects of the circuit board and components. You may further
assume that the roughness of the boards is 2.5 mm. The air exhausts to atmospheric
pressure. What effect would adding a louvered grill to the back of the cabinet have
on the required fan pressure? How will your flow equations change? In your analysis
include the effect of entrance and exit effects due the reduction in area. The density
of air at 20 C is ρ = 1.2 kg/m3 and the viscosity is µ = 1.81× 10−5 Pa · s.

3.4 Pipe Networks

Most engineering systems are comprised of more than one section of pipe. In fact
in most systems a complex network of piping is required to circulate the working
fluid of a particular thermal system. These networks consist of series, parallel, and
series-parallel configurations. We will examine each of these separately. However,
before we proceed, a brief summary of the classification of piping system problems
is necessary. This classification determines the type of solution which is obtainable
when any two of the following principal design parameters are specified: head loss or
∆p, volumetric flowrate Q, and pipe diameter D.

Pipe flow problems fall into three categories. In Category I problems the solution
variable is the head loss or pressure drop ∆p. The problem is specified such that the
volumetric flow Q, the length of pipe L, the size or diameter D, are all known along
with other parameters such as the pipe roughness and fluid properties. These types
of problems yield a direct solution for the unknown variable ∆p. In a Category II
problem, the head loss (h or ∆p) is specified and the volumetric flow Q is sought.
Finally in a Category III problem, both the head loss and volumetric flow are specified,
but the size or diameter of the pipe D is sought. Category I and Category II problems
are considered analysis problems since the system is specified and only the flow is
calculated. Whereas Category III problems are considered design problems, as the
operating characteristics are known, but the size of the pipe is to be determined. Both
Category II and Category III problems require an iterative approach in solution.
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• TYPE I - ∆p → Q or ṁ, L, D

• TYPE II - Q or ṁ → ∆p, L, D

• TYPE III - L or D → ∆p, Q or ṁ, D or L

Depending upon the nature of the flow (and solution process), it may be required
to recompute other parameters such as the relative roughness at each iterative pass,
since the ε/D ratio will change as the pipe diameter changes. However, with most
modern computational software, we may solve “iterative” problems rather efficiently
and need not resort to classic methods such as Gaussian elimination.

The simplest pipe networks are those that are either entirely composed of the series
type of arrangement or the parallel type of arrangement as shown in Fig. 3.9. We
will examine these two arrangements first and then proceed to the more complex
series-parallel network.

3.4.1 Pipes in Series

The series flow arrangement is the simplest to analyze. In a series arrangement of
pipes, the volumetric flow at any point in the system remains constant assuming the
fluid is incompressible. Thus, for an arrangement of N pipes, the volumetric flow is
given by

Q1 = Q2 = Q3 = · · · = QN = constant (3.39)

or

V1A1 = V2A2 = V3A3 = · · · = VNAN = constant (3.40)

The head loss in the system is the sum of the individual losses in each section of
pipe. That is

∆pA→B = ∆p1 + ∆p2 + ∆p3 + · · ·+ ∆pN (3.41)

Note, that minor losses have not been accounted for in the above formulation. Pipe
expansions and contractions account for significant losses at the joints. Further, care
must be taken when analyzing the series system, as the pressure drop in Fig 3.9 (b)
is not the same if the flow is reversed, i.e. from right to left, due to differences in the
dynamic pressure at the inlet and outlet.



58 Mechanical Equipment and Systems

Fig. 3.9 - Series and Parallel Flow, From Fluid Mechanics, White, McGraw-
Hill, 2000.

Example 3.4
Examine the series piping system consisting of three pipes each having a length

L = 1 m. The diameter of the first pipe is D1 = 0.02664 m, the diameter of the
second pipe is D2 = 0.07792 m, and the diameter of the third pipe is D3 = 0.05252
m. Assume that the roughness ε = 0.0005 m for each pipe. The fluid properties may
be taken to be ρ = 1000 kg/m3, µ = 1.0 × 10−3 Pa · s. Develop the pressure drop
versus mass flowrate characteristic for the system assuming at first no minor losses
and then include minor losses. What is the pressure drop when the mass flowrate is
ṁ = 20 kg/s? How significant are the minor losses relative to the piping losses?

3.4.2 Pipes in Parallel

Flow in parallel piping elements is also easy to analyze. In a parallel arrangement
the total head loss or pressure drop across the system is constant. That is

∆p1 = ∆p2 = ∆p3 = · · · = ∆pN = constant (3.42)

On the other hand, the volumetric flow through the system is the sum total of the
individual flow in each pipe. That is

QA→B = Q1 + Q2 + Q3 + · · ·+ QN (3.43)

assuming an incompressible fluid. In many piping systems, parallel branches provide
a means of flow bypassing, for diverting excess flow or for maintenance purposes. In
a systems analysis, it is often desirable to develop the equivalent headloss curve as a
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function of the total flow through the branched network, rather than as a function of
individual flows. We will address this issue later.

Example 3.5
Examine the parallel piping system consisting of three pipes each having a length

L = 1 m. The diameter of the first pipe is D1 = 0.02664 m, the diameter of the
second pipe is D2 = 0.07792 m, and the diameter of the third pipe is D3 = 0.05252
m. Assume that the roughness ε = 0.0005 m for each pipe. The fluid properties may
be taken to be ρ = 1000 kg/m3, µ = 1.0 × 10−3 Pa · s. Develop the pressure drop
versus mass flowrate characteristic for each of pipes in the system and the pressure
drop versus total mass flowrate characteristic, assuming no minor losses. What is the
pressure drop when the total mass flowrate is ṁ = 50 kg/s? At this flowrate what
fraction of flow occurs in each branch?

Fig. 3.10 - Pipe Flow Network, From Fluid Mechanics, White, McGraw-Hill,
2000.

3.4.3 Series-Parallel Networks

In a series-parallel pipe network as shown in Fig. 3.10, we must apply rules which
are analogous to the analysis of an electric circuit. In Fig. 3.10 only shows the pipe
network in 2-Dimensions. In reality, a pipe network is most often three dimensional.
Thus, the elevations of each nodal point need to be considered when writing the
extended Bernoulli equation. The following rules apply in any network of pipes:

1) The net flow into any junction is zero,
∑

Qi = 0
2) The net head loss around any loop must be equal to zero,

∑
∆pi = 0

Application of these rules leads to a complex set of equations which must be solved
numerically. These are easily dealt with in most mathematical/numerical analysis
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programs. However, a method of hand calculation know as the Hardy-Cross method
may also be applied, (Hodge and Taylor, 1999). This method is the basis for most
computer software developed for analyzing piping systems. In this chapter we will
address only planar systems, but the principles are easily applied to non-planar sys-
tems.

Example 3.6
Water flows in a pipe network (described by a sketch in class. The pipes forming the

network have the following dimensions: L1 = 1777.7 m, D1 = 0.2023 m, L2 = 1524.4
m, D2 = 0.254 m, L3 = 1777.7 m,D3 = 0.3048 m, L4 = 914.6 m, D4 = 0.254 m,
L5 = 914.6 m, and D5 = 0.254 m. If the mass flowrate entering the system is ṁA = 50
kg/s and ṁB = 25 kg/s and ṁC = 25 kg/s are drawn off the system at points B and
C, compute the pressure drops and flow in each section of pipe. Ignore minor losses
and assume that each junction is at the same elevation.

3.5 Manifolds and Distribution Networks

Manifolds are used to distribute a fluid within a mechanical system, usually on a small
scale, according to specified requirements. Similarly, on a larger scale, distribution
networks must direct fluid to a number of locations per some pre-selected criteria.
Manifolds are often used in heat exchangers, automotive systems, and other fluid
machinery. Distribution networks may be found in HVAC systems both for water and
air flows, water supply systems, steam lines in a power plant, and process streams in
a refinery to name a few. In both cases, a balancing of fluid flow is often desired such
that each outlet receives essentially the same flow or some prescribed fraction of the
total flow. The primary difference, is that manifold design is dominated by minor
losses, while distribution networks are dominated by major losses.

Fig. 3.11 - A Fluid Distribution Manifold, From Applied Fluid Dynamics Hand-
book, Blevins, Van Nostrand Reinhold, 1984.



Flow Analysis 61

Fig. 3.12a - Branching Loss Factors, From Applied Fluid Dynamics Handbook,
Blevins, Van Nostrand Reinhold, 1984.
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Fig. 3.12b - Branching Loss Factors, From Applied Fluid Dynamics Handbook,
Blevins, Van Nostrand Reinhold, 1984.
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Fig. 3.12c - Branching Loss Factors, From Applied Fluid Dynamics Handbook,
Blevins, Van Nostrand Reinhold, 1984.
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The key to analyzing these systems is that most often the fluid flows from a single
point at a known or calculated pressure, to several other locations which are all at
some lower pressure. This constitutes a series-parallel network which usually results
in a series of difference equations. The underlying principle is that the total pressure
drop between inlet and any exit is the same. Thus the size of the system is to be
determined for balancing or equalizing flow out of each exit port. However, the flow
at any point along the path of interest is not constant. Each loss in the system must
be calculated at the flow rate which flows through the segment of interest. The total
pressure drop for each section is then calculated and summed over each flow path.
This is best illustrated by means of a sample calculation. Fig. 3.11 shows a typical
fluid splitting manifold. If the flow is reversed then a collection manifold is obtained.
Fig. 3.12 (a-c) provide useful K-factors for branching flows.

Example 3.7
Examine the system given below. The water distribution system is to be designed

to give equal mass flow rate to each of the two locations, which are not of equal
distance from the source. In order to achieve this, two pipes of different diameter are
used. Determine the size of the longer pipe which yields the same mass flow rate. You
may assume that all of the kinetic energy is lost at the terminations of the pipeline
and that the pressure is atmospheric. In your solution

• Develop the basic equations for each branch of the system

• Determine the required diameter of the longer pipe

• Assume K=1.5 for the junction connection

The density of water at 20 C is ρ = 1000 kg/m3 and the viscosity is µ = 1× 10−3

Pa · s.

Example 3.8
You are to design an air distribution system having the following layout: main line

diameter D = 50 cm and four equally spaced branch lines having diameter d = 30
cm. Each branch line is to have the same air flow. To achieve this, you propose using
a damper having a well defined variable loss coefficient, to control the flow in each
branch. Determine the value of the loss coefficient for each damper, such that the
system is balanced. Each section of duct work is 5 m in length. A total flow of 10
m3/s is to be delivered by a fan. In your solution consider the minor losses at the
junctions K = 0.8 and exits K = 1.0. What fan pressure is required? Assume air
properties to be ρ = 1.1 kg/m3, and µ = 2× 10−5 Pa · s.

Example 3.9
You are to analyze the flow through a flat plate solar collector system as shown in

class. The system consists of a series of pipes connected to distribution and collection
manifolds. Make any necessary assumptions.
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3.6 Two Phase Flow Models

We conclude the discussion of flow analysis by considering the important topic of two
phase flow in pipes. Two phase flows occur in steam plants as the working fluid passes
through the boiler and condenser, in refrigeration systems as the refrigerant passes
through the condenser and evaporator, and in oil and gas operations as a mixture of
gas and oil during production and separation processes. In many applications more
than two phases may be present. Particularly in chemical processes where a solid
phase may also be present in addition to the gas and liquid phases. In this course we
will only consider two phase liquid/gas systems. Further, the flow may be considered
to be adiabatic or non-adiabatic. Non-adiabatic flows occur during phase change
operations. Finally, there is a distinction between horizontal, vertical up flow, and
vertical down flow, refer to Figs. 3.13-3.16 given below.

In order to undertake a two phase flow analysis a number of important concepts
and definitions need to be addressed. First, the void fraction is defined as the ratio
of the gas volume to the total mixture volume in an elemental control volume. That
is

αg =
Vg

V
=

Ag

A
(3.44)

We may also define the void fraction in terms of the liquid such that

αl =
Vl

V
=

Al

A
(3.45)

These are related by means of the following relationship:

αg + αl = 1 (3.46)

Next we must define the mass flux G such that

G = ρU =
ṁ

A
(3.47)

Now for each phase we may define the mass flux in terms of the superficial velocities,
that is the velocity of each phase in the pipe if each phase occupied the total cross-
sectional area. These are:

Gg = ρgUg (3.48)

and
Gl = ρlUl (3.49)

The actual phase velocities are defined using the void fraction:

ug =
Ug

αg

=
Gg

ρgαg

(3.50)
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Fig. 3.13 - Two Phase Flow Patterns in a Vertical Pipe, From Two Phase
Flow and Heat Transfer, Whalley, Oxford, 1996.

Fig. 3.14 - Two Phase Flow Map for Vertical Up Pipe Flow, From Two
Phase Flow and Heat Transfer, Whalley, Oxford, 1996.
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Fig. 3.15 - Two Phase Flow Patterns in a Horizontal Pipe, From Two
Phase Flow and Heat Transfer, Whalley, Oxford, 1996.

Fig. 3.16 - Two Phase Flow Map for Horizontal Pipe Flow, From Two
Phase Flow and Heat Transfer, Whalley, Oxford, 1996.
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and

ul =
Ul

αl

=
Gl

ρlαl

(3.51)

Finally, the quality of the flow is defined as

x =
Gg

Gg + Gl

(3.52)

It takes a value of 0 for liquid only flow, and a value of 1 for gas only flow.
In a two phase flow, the total pressure gradient on an elemental control volume

may be obtained (assuming a homogeneous flow):

−dp

dz
=

4τw

Dh︸︷︷︸
friction

+ ρg sin(θ)︸ ︷︷ ︸
gravitational

+ G2 d

dz

(
1

ρ

)
︸ ︷︷ ︸
accelerational

(3.53)

The frictional component is most often the largest, unless there is significant change
in density of the mixture such as during a non-adiabatic flow. It accounts for the
viscous action of the fluid mixture on the duct walls and for interphase effects. The
gravitational term accounts for the elevation change the mixture experiences. It can
easily be accounted for if teh void fraction is known. Finally, the accelerational term
accounts for the change in pressure due to changes in density. It is only important
when phase change occurs or when the density changes along the flow path such
as during injection processes. The mean density may be determined using volume
averaging for a homogeneous flow, i.e.,

ρ = αgρg + αlρl =

[
x

ρg

+
1− x

ρl

]−1

(3.54)

In two phase flow analysis, many approaches have been adopted for prediction of the
frictional pressure gradient. These include homogeneous flow models and separated
flow models. In a homogeneous flow model, the gas and liquid are assumed to have the
same velocity, i.e., a single mixture velocity. While in a separated flow model, they
can have different flow velocities. In general separated flow models are more accurate
as they rely on the actual phase velocities. However, due the complex nature of two
phase flows, often accuracy of only 40 percent or better can be obtained.

Most two phase flow models use a concept referred to as a two phase flow multiplier.
That is a special correction factor is calculated which corrects the single phase flow
pressure gradient for the gas mass flux Gg or liquid mass flux Gl, i.e.,

φ2
g =

(dp/dz)

(dp/dz)g

(3.55)

or

φ2
l =

(dp/dz)

(dp/dz)l

(3.56)
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More often, though, the models use a gas only or a liquid only multiplier. That is,
they assume that either gas or liquid only flow with the total mass flux G, i.e.,

φ2
go =

(dp/dz)

(dp/dz)go

(3.57)

or

φ2
lo =

(dp/dz)

(dp/dz)lo

(3.58)

These single phase flow pressure gradients are computed using traditional methods
such as the Swamee and Jain equation or the Churchill equation discussed earlier.

We now conclude with a discussion of three different separated flow models which
are widely used in industry. These are: the Lockhart-Martinelli model, the Chisholm
model, and the Friedel model. These models were developed for tubes and pipes
having diameters typically greater than about 1/2 centimeter.

Lockhart-Martinelli Model
In the Lockhart-Martinelli model, the two phase multiplier is defined using the

parameter

X2 =
(dp/dz)l

(dp/dz)g

(3.59)

The two phase multipliers are then computed using

φ2
l = 1 +

C

X
+

1

X2
(3.60)

or
φ2

g = 1 + CX + X2 (3.61)

where C is tabulated below. There are four possible flow scenarios depending on the
type of flow each phase experiences, i.e. laminar or turbulent. This is determined
using the appropriate Reynolds numbers for each phase. In this case since the two
phase flow multiplier is based on the liquid or gas phase mass flux, then so to are the
Reynolds numbers.

Liquid Gas C
Turbulent Turbulent 20
Laminar Turbulent 12
Turbulent Laminar 10
Laminar Laminar 5

Chisholm Model
The Chisholm model is a little more complex, but provides impreoved accuracy. It

takes the following form:

φ2
lo = 1 + (Y 2 − 1)

[
Bx(2−n)/2(1− x)2−n)/2 + x(2−n)

]
(3.62)
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where
B = 55/G1/2 0 < Y < 9.5
B = 520/(Y ·G1/2) 9.5 < Y < 28
B = 15000/(Y 2 ·G1/2) Y > 28

(3.63)

and

Y 2 =
(dp/dz)go

(dp/dz)lo

(3.64)

The exponent n takes the value n = 1 for laminar flow and n = 1/4 for turbulent
flow when calculating the liquid only Reynolds number.

Friedel Model
The Friedel model takes the following form for the two phase flow multiplier

φ2
lo = E +

3.24F ·H
Fr0.045We0.035

(3.65)

where

E = (1− x)2 + x2

(
ρlfgo

ρgflo

)
(3.66)

and
F = x0.78(1− x)0.24 (3.67)

and

H =

(
ρl

ρg

)0.91(
µg

µl

)0.19(
1− µg

µl

)0.7

(3.68)

The Froude and Weber numbers are defined as:

Fr =
G2

gDhρ
2 (3.69)

We =
G2Dh

ρσ
(3.70)

where σ is the surface tension of the liquid and g = 9.81 is the gravitational constant.
In general, the Chisholm and Friedel models are the best with Friedel providing the

greatest accuracy as it is based on a very large data set comprising some 25,000 data
points. Note if the Friedel model is used with two immiscible fluids, the less viscous
phase must be taken as the ”gas”, i.e. µg < µl.

The above models are recommended for use under the following conditions [Het-
sroni, 1982]:

• For µl/µg < 1000, the Friedel model should be used.

• For µl/µg > 1000 and ṁ > 100, the Chisholm model should be used.
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• µl/µg > 1000 and ṁ < 100, the Lockhart-Martinelli should be used.

In this regard, it is recommended to using bounding models to provide some rea-
sonable level of certainty in analysis. These simple bounding models are discussed
next.

Bounds on Two Phase Flow Calculations
To alleviate the issue of variations between the various two phase flow models,

Awad and Muzychka (2005), developed simple bounding models which determine the
reasonable expected range of two phase flow frictional pressure drop and void fraction.
These models provide the upper, lower, and mean values of these parameters for
turbulent two phase flow in pipes.

Frictional pressure gradient can be bounded such that:(
dp

dz

)
l

<
dp

dz
<

(
dp

dz

)
u

(3.71)

where the lower and upper bounds are given by:(
dp

dz

)
l

=
0.158G7/4(1− x)7/4µ

1/2
l

ρlD5/4

[
1 +

(
x

1− x

)0.7368(
ρl

ρg

)0.4211(
µg

µl

)0.1053
]2.375

(
dp

dz

)
u

=
0.158G7/4(1− x)7/4µ

1/2
l

ρlD5/4

[
1 +

(
x

1− x

)0.4375(
ρl

ρg

)0.25(
µg

µl

)0.0625
]4

and, the mean obtained from:

dp

dz
=

1

2

[(
dp

dz

)
l

+

(
dp

dz

)
u

]
(3.72)

The void fraction can also be modelled in a similar manner such that:

αl < α < αu (3.73)

where the lower and upper bounds are given by:

αl =
1

1 +

[(
1− x

x

)0.875(
ρg

ρl

)0.5(
µl

µg

)0.125
]0.84

αu =
1

1 + 0.28

[(
1− x

x

)0.875(
ρg

ρl

)0.5(
µl

µg

)0.125
]0.71

and, the mean obtained from

α =
1

2
[αl + αu] (3.74)
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The above expressions allow one to compute the reasonable expected limits in a two
phase pipe flow. Since they are based on experimental data which have considerable
spread due to experimental errors and the general complexity of the flow, the bounds
can be as large as ±50% for pressure drop and ±20% for void fraction. Unfortunately
this is the nature of two phase flow.

Example 3.10
Air and water flow in a three inch diameter pipe. The mass flux is G = 500 kg/sm2

and the quality is x = 0.1. Determine the frictional pressure gradient required to
move the flow using the Lockhart-Martinelli, Chisolm, and Friedel models. Assume
T = 30 C. Next use the bounded modelling approach and compare all of the results.
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